Volume and Solid Modeling

CS418 Computer Graphics
 John C. Hart

Implicit Surfaces

- Real function $f(x, y, z)$
- Classifies points in space
- Image synthesis (sometimes)

Circle example $f(x, y)=x^{2}+y^{2}-1$

- inside $f>0$
- outside $f<0$
- on the surface $f=0$
- CAGD: inside $f<0$, outside $f>0$
- Surface $f^{1}(0)$: Manifold if zero is a regular value of f

Why Use Implicits?

- v. polygons
- smoother
- compact, fewer higher-level primitives
- harder to display in real time
- v. parametric patches

- easier to blend
- no topology problems
- lower degree
- harder to parameterize
- easier to ray trace
- well defined interior

Surface Normals

- Surface normal usually gradient of function

$$
\nabla f(x, y, z)=(\delta f / \delta x, \delta f / \delta y, \delta f / \delta z)
$$

- Gradient not necessarily unit length
- Gradient points in direction of increasing f
- Outward when $f<0$ denotes interior
- Inward when $f>0$ denotes interior

$$
\begin{aligned}
& \text { Circle example } \\
& f(\mathbf{x})=x^{2}+y^{2}-1 \\
& \mathbf{x}=(x, y)
\end{aligned}
$$

Plane

- Plane bounds half-space
- Specify plane with point \mathbf{p} and normal N
- Points in plane \mathbf{x} are perp. to normal N
- f is distance if $\|N\|=1$

$$
f(\mathbf{x})=(\mathbf{x}-\mathbf{p}) \cdot N
$$

Quadrics

$f(x, y, z)=A x^{2}+2 B x y+2 C x z+2 D x+$

$$
\begin{array}{r}
E y^{2}+2 F y z+2 G y+ \\
H z^{2}+2 I z+ \\
J
\end{array}
$$

- Sphere: $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=x^{2}+y^{2}+z^{2}-1$
- Cylinder: $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=x^{2}+y^{2}-1$
- Cone: $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=x^{2}+y^{2}-z^{2}$
- Paraboloid: $A x^{2}+E y^{2}-2 I z=0$

Homogeneous Quadrics

Homogeneous coordinates

- [xyzw]
- Divide by w to find actual coords: [x/w y/w z/w 1]

$$
f(\mathbf{x})=\mathbf{x}^{\mathrm{T}} Q \mathbf{x} \quad f(x, y, z)=\left[\begin{array}{llll}
x & y & z & 1
\end{array}\right]\left[\begin{array}{cccc}
A & B & C & D \\
B & E & F & G \\
C & F & H & I \\
D & G & I & J
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Transforming quadrics } \\
& \mathbf{x} Q \mathbf{x}^{\mathrm{T}}=0, \quad \mathbf{x}^{\prime}=\mathbf{x} T \\
& \text { find } Q^{\prime} \text { s.t. } \mathbf{x}^{\prime} Q^{\prime} \mathbf{x}^{\prime}{ }^{\mathrm{T}}=0 \\
& \mathbf{x}=\mathbf{x}^{\prime} T^{*} \text { since } \mathbf{x} \text { homo. } \\
& \mathbf{x}^{\prime} T^{*} Q\left(\mathbf{x}^{\prime} T^{*}\right)^{\mathrm{T}}=0 \\
& \mathbf{x}^{\prime}\left(T^{*} Q T^{* \mathrm{~T}}\right) \mathbf{x}^{\prime}{ }^{\mathrm{T}}=0 \\
& \mathrm{Q}^{\prime}=T^{*} Q T^{*}{ }^{*} \mathrm{~T}
\end{aligned}
$$

Torus

- Product of two implicit circles

$$
\begin{aligned}
& (x-R)^{2}+z^{2}-r^{2}=0 \\
& (x+R)^{2}+z^{2}-r^{2}=0 \\
& \left((x-R)^{2}+z^{2}-r^{2}\right)\left((x+R)^{2}+z^{2}-r^{2}\right) \\
& \left(x^{2}-R x+R^{2}+z^{2}-r^{2}\right)\left(x^{2}+R x+R^{2}+z^{2}-r^{2}\right) \\
& x^{4}+2 x^{2} z^{2}+z^{4}-2 x^{2} r^{2}-2 z^{2} r^{2}+r^{4}+2 x^{2} R^{2}+2 z^{2} R^{2}- \\
& 2 r^{2} R^{2}+R^{4} \\
& \left(x^{2}+z^{2}-r^{2}-R^{2}\right)^{2}+4 z^{2} R^{2}-4 r^{2} R^{2}
\end{aligned}
$$

- Surface of rotation
replace x^{2} with $x^{2}+y^{2}$
$f(x, y, z)=\left(x^{2}+y^{2}+z^{2}-r^{2}-R^{2}\right)^{2}+4 R^{2}\left(z^{2}-r^{2}\right)$

CSG

- Assume $f<0$ inside
- CSG ops by min/max ops
- Union: $\min f, g$
- Intersection: $\max f, g$
- Complement: -f
- Subtraction: max $f,-g$

- Problem: C^{1} discontinuity
- Can we smooth the blend crease?

Blobs

- Blinn TOG 1(3) 1982
- Sum of Gaussians

$$
\begin{aligned}
& r_{i}^{2}(x, y, z)=x^{2}+y^{2}+z^{2} \\
& f(\mathbf{x})=-1+\sum \exp \left(-\left(\mathrm{B}_{i} / \mathrm{R}_{i}^{2}\right) r_{i}^{2}+\mathrm{B}_{i}\right)
\end{aligned}
$$

B - blobbiness (positive)
R - radius of blob at rest

r - radius function

Soft Objects

- Wyvill, McPheeters \& Wyvill VC 86
- Exponential: too expensive, non-local
- Approximate $\exp \left(-r^{2}\right)$ with polynomial $C()$

$$
\begin{aligned}
& C(0)=1, C(R)=0, C^{\prime}(0)=0, C^{\prime}(\mathrm{R})=0 \\
& C\left(r^{2}\right)=-(4 / 9) r^{6} / R^{6}+(17 / 9) r^{4} / R^{4}-(22 / 9) r^{2} / R^{2} \\
& \quad+1 \\
& C(r)=2 r^{3} / R^{3}-3 r^{2} / R^{2}+1 \\
& C(r)=\left(1-\mathrm{r}^{2} / R^{2}\right)^{3} \quad\left(G^{2} \text { continuity }\right)
\end{aligned}
$$

Pair of quadratics (metaballs)

Marching Cubes

Read volume in two slices at a time
For each cubic cell
Compute index using bitmask of vertices

Output polygon(s) stored at index translated to cell position
End for
Remove last slice, add new slice, repeat

Marching Cube Cases

256 in all
15 modulo symmetry

Marching Tet Cases

3 modulo symmetry

Orientation

- Consistency allows polygons
 to be drawn with correct orientation
- Supports backface culling

Problem: Ambiguity

- Some cell corner value configurations
 yield more than one consistent polygon
- Only for cubes, not tetrahedra (why?)
- In 3-D can yield holes in surface!
- How can we resolve these ambiguities?

Examples from Lewiner et al., Efficient Implementation of Marching Cubes' Cases with Topological Guarantees. J. Graphics, GPU \& Game Tools 8(2), 2003, pp. 1-15.

Problem: Ambiguity

- Some cell corner value configurations
 yield more than one consistent polygon
- Only for cubes, not tetrahedra (why?)
- In 3-D can yield holes in surface!
- How can we resolve these ambiguities?
- Topological Inference
- Sample a point in the center of the

$P(s, t)=$
(1-s)(1-t) $a+$ $s(1-t) b+$ $(1-s) t c+$ $s t d$ ambiguous face
- If data is discretely sampled, bilinearly interpolate samples

Problem: Ambiguity

- Some cell corner value configurations yield more than one consistent polygon
- Only for cubes, not tetrahedra (why?)
- In 3-D can yield holes in surface!
- How can we resolve these ambiguities?
- Topological Inference
- Sample a point in the center of the ambiguous face
- If data is discretely sampled, bilinearly
 interpolate samples
- Preferred Polarity
- Encode preference into table
$-\equiv$ cubes \rightarrow tets
- MC edges across neighboring faces must
 share direction to avoid cracks/holes

